
A tiling problem

I Q: Can this board be tiled by dominoes?



A tiling problem
I Q: Can this board be tiled by dominoes?

I A: No, each domino must cover 1 black square and 1 white
square, and there are 30 black squares and 32 white squares.



Another tiling problem

I Q: For which m, n can an m × n rectangle be tiled with copies
of these tiles (rotations and reflections allowed)?

I If mn is a multiple of 3, then the rectangle can be tiled.



Another tiling problem

I Q: For which m, n can an m × n rectangle be tiled with copies
of these tiles (rotations and reflections allowed)?

I If mn is not a multiple of 3, it seems impossible.
I Can we prove that it’s impossible? Maybe by using a coloring

argument?
I I claim that a coloring argument can’t work.



Signed tilings
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Signed tilings

I Q: Does this board have a signed tiling by dominoes?



Signed tilings
I Q: Does this board have a signed tiling by dominoes?

I A: No, signed tilings still cover the same number of black and
white dominoes.



Signed tilings

I Q: For which m, n does an m× n rectangle have a signed tiling
using copies of these tiles?



Signed tilings
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I A 1× 1 rectangle has a signed tiling. Then every rectangle has
a signed tiling.



Signed tilings - conclusion

I If a coloring argument proves that a tiling can’t exist, then it
also proves that a signed tiling can’t exist.

I So, if there is a signed tiling, coloring arguments can’t help us!



Not (obviously) a tiling problem

(Tournament of the Towns, 1980)
I Suppose we have a circle with red and blue beads.
I We are allowed to add a red bead to the circle and change the

color of both of its neighbors, or remove a red bead from the
circle and change the color of both of its neighbors.

I If we start with 2 blue beads and no red beads, is it possible to
obtain a configuration with 2 red beads and no blue beads?
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Trying all possible moves



Looking for patterns



Looking for patterns



Looking for patterns



Conclusion

I We observed two invariants:
I Number of blues is even.
I Alternating sum of reds is divisible by 3.

I We can verify that all moves preserve the invariant:

⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒

I Can we ever get 2 reds and no blues?
I No, because the alternating sum of reds would not be divisible

by 3.



Another interpretation

I Replace with , with , with .

=



Another interpretation

I Some reachable configurations:

I An unreachable configuration (2 red beads):

I Do you notice a difference?
I The top three drawings have 3 strands. The bottom drawing

has only 1 strand.



Another interpretation

I We found another way of describing the invariant:
I The drawing has three separate strands.
I In other words, if you go once around the circle, you always

end up back where you started.

I Again, we can check that all moves preserve how the strands
are rearranged:



Another interpretation
I We found another way of describing the invariant:

I The drawing has three separate strands.
I In other words, if you go once around the circle, you always

end up back where you started.

I The necklace with 2 red beads and no blue beads can never be
reached, because it has only one strand.



A tiling problem?

I Some allowed moves:

⇒ ⇒



I We can think of a sequence of moves from to

as a tiling of , with one tile per move.



= +

Start and end Move 1 Move 2



Necklaces and strands, again

I Before, we associated with .

I Now, we’ll draw the diagram slightly differently, on a cylinder:



Moves and strands
I We will make a tile for each move.

⇓ ⇓

I These tiles have 3 separate strands.



Smashing tiles together

= +

= +

Start and end Move 1 Move 2

I Stretching tiles is allowed. Decorations must match.



(Actually) a tiling problem

(Tiling version of Tournament of the Towns problem)
I Q: Can we combine any number of

(+ mirror images) to make ?

I No. If the inner boundary and the tiles have three separate
strands, then the outer boundary must have three separate
strands as well.



Back to the earlier problem

I It seems impossible to tile an m × n rectangle with copies of
these tiles (including rotations and reflections) if mn is not a
multiple of 3. Can we prove that it’s impossible?



A strategy

I Suppose we draw designs on the walls above, so that:

I Going around (or

rotations or reflections) preserves the order of the strands.
I Going around an m × n rectangle changes the order of the

strands.

I Then this rectangle cannot be tiled.
I How to choose the designs?

I Trial and error sometimes works. A computer can try lots of
possibilities.



A solution

I The following happens to work:

Draw on each , on each .

I Example tile: , rectangle: .

I Going around any tile preserves the order of the strands.
I Going around an m × n rectangle preserves the order of the

strands if and only if mn is a multiple of 3.
I Hence m × n rectangles can only be tiled if mn is divisible by

3. This is what we wanted to prove!



Relation to coloring argument
I The permutation method is actually a generalization of the

coloring method.
I Here is another way of thinking about the domino tiling

problem:

I Black squares have 1 counterclockwise arrow around their
boundary, and white squares have 1 clockwise arrow around
their boundary.

I Any domino has the same number of clockwise and
counterclockwise arrows around its boundary.



Relation to coloring argument

I Black squares have 1 counterclockwise arrow around their
boundary, and white squares have 1 clockwise arrow around
their boundary.

I Any domino has the same number of clockwise and
counterclockwise arrows around its boundary.

I So any tileable region has an equal number of clockwise and
counterclockwise arrows around its boundary.

I The chessboard with 2 corners missing has 5 clockwise arrows
and 3 counterclockwise arrows around its boundary.



The domino tiling problem can be solved with permutations.
I Use infinitely many strands.

I Edges marked with an arrow: . . . . . .

I All other edges: . . . . . .

I When going around a closed loop, strands get shifted by
# of counterclockwise arrows−# of clockwise arrows.



Further reading

I J. Conway and J. Lagarias, “Tiling with Polyominoes and
Combinatorial Group Theory”

I D. Fuchs and S. Tabachnikov, “Impossible Tilings”, in
Mathematical Omnibus: Thirty Lectures on Classic
Mathematics

I J. Propp, “A Pedestrian Approach to a Method of Conway, or,
A Tale of Two Cities”

I W. Thurston, “Conway’s tiling groups”


